Recitation 3. March 16

Focus: nullspaces, systems of equations, dimension and rank, orthogonal subspaces, projection matrices
The nullspace of an $m \times n$ matrix A is the vector space consisting of those $\boldsymbol{v} \in \mathbb{R}^{n}$ such that $A \boldsymbol{v}=0$. To find a basis of the nullspace, put the matrix in reduced row echelon form, and look at the pivot and free variables.

The general solution to a system of equations $A \boldsymbol{v}=\boldsymbol{b}$ is:

$$
\boldsymbol{v}=\boldsymbol{v}_{\text {particular }}+\boldsymbol{w}_{\text {general }}
$$

where $\boldsymbol{v}_{\text {particular }}$ is a particular solution, and $\boldsymbol{w}_{\text {general }}$ is a general element of $N(A)$.

The dimension of a vector space is the number of vectors in a basis (i.e. a collection of linearly independent vectors which span the vector space in question). The rank of a matrix A is the dimension of its column space $C(A)$.

Two subspaces V, W of \mathbb{R}^{n} are called orthogonal if any vector in a basis of V is orthogonal (a.k.a. perpendicular, a.k.a. has dot product 0) to any vector in a basis of W. For any matrix A :

- the column space is the orthogonal complement of the left nullspace
- the row space is the orthogonal complement of the nullspace

The projection of a vector $\boldsymbol{b} \in \mathbb{R}^{n}$ onto a subspace $V \subset \mathbb{R}^{n}$ is the closest vector $\boldsymbol{p} \in V$ to \boldsymbol{b}. It can be computed by:

$$
\boldsymbol{p}=\underbrace{A\left(A^{T} A\right)^{-1} A^{T}}_{\text {projection matrix }} \boldsymbol{b}
$$

for any matrix A with column space V. The columns of A must be linearly independent to apply the formula above!

1. Use Gauss-Jordan elimination to compute the null space $N(X)$ of the matrix

$$
X=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 4 & -1 & -5
\end{array}\right]
$$

Then find the general solution to the system of equations:

$$
X \boldsymbol{v}=\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]
$$

Solution:

Solution:

2. Find bases for the four fundamental subspaces of the matrix X in Question 1, and check that these four subspaces are orthogonal complements of each other, in the appropriate pairs.

Solution:

Solution:

3. Consider the subspace V with basis given by $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Compute the closest point of V to the vector $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$. Check that the projection matrix P_{V} onto the subspace V satisfies that $P_{V}^{2}=P_{V}$

Solution:

